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Abstract
Alzheimer’s disease (AD) is an incurable and progressive disease that starts from
mild cognitive impairment and deteriorates over time. Examining the effects
of patients’ longitudinal cognitive decline on time to conversion to AD and
obtaining a reliable diagnostic model are therefore critical to the evaluation
of AD prognosis and early treatment. Previous studies either assess patients’
cognitive impairment through a single cognitive test or assume it changes lin-
early across time, thereby leading to an incomplete measure of cognitive decline
or overlooking the subtle trajectory pattern of patients’ cognitive impairment.
This study develops a new joint model to address these shortcomings. First,
a dynamic factor analysis model is adopted to characterize cognitive impair-
ment through multiple cognitive measures in a comprehensive manner. Sec-
ond, a spline-based random coefficient model is proposed to reveal possibly
nonlinear trajectories of patients’ cognitive decline. Finally, a proportional haz-
ard model is considered to examine the effects of time-invariant markers and
time-variant cognitive impairment on AD hazards. A Bayesian approach cou-
pled with spline approximation techniques and MCMC methods is developed
to conduct statistical inference. The application of the proposed method to the
Alzheimer’s Disease Neuroimaging Initiative study provides new insights into
the prevention of AD and shows a high prediction capacity of the proposed
method.

K E Y W O R D S

factor analysis, latent trajectory model, longitudinal responses, MCMC methods, time-to-event
outcome

1 INTRODUCTION

Alzheimer’s disease (AD) is a chronic and progressive disease that usually starts with a short memory loss, also referred
to as mild cognitive impairment (MCI), and worsens over time. Clinical trials or prospective studies investigating AD
often recruit individuals with MCI and repeatedly collects measurements of cognitive impairment via neuropsycholog-
ical or behavioral assessments over time. During the cohort study, patients who meet the specific inclusion criteria are
diagnosed as having AD, and thus, a possibly censored time-to-AD outcome is also recorded. Only a portion of MCI
patients progress to AD, whereas some individuals remain stable or even revert to normal cognition. Thus, exploring the

Statistics in Medicine. 2021;1–18. wileyonlinelibrary.com/journal/sim © 2021 John Wiley & Sons Ltd. 1

https://orcid.org/0000-0003-2785-4666
https://orcid.org/0000-0002-4877-3200
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsim.9241&domain=pdf&date_stamp=2021-11-02


2 KANG et al.

association between the feature of longitudinal cognitive impairment and time-to-AD and investigating early markers for
the diagnosis of AD are of great value in AD prevention and targeted treatment.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) study began at 2004, and it tracked the pathology
of AD in the human brain with serial magnetic resonance imaging (MRI), biospecimen biomarkers, and various
clinical and neurocognitive measures from subjects with normal aging, MCI, dementia, or AD. Detailed infor-
mation about ADNI, including complete study visit procedures and inclusion/exclusion criteria, can be found in
the official website (www.adni-info.org). After obtaining informed consent, participants underwent a series of ini-
tial tests, including Alzheimer Disease Assessment Scale-Cognitive 11 (ADAS11), Alzheimer Disease Assessment
Scale-Cognitive 13 (ADAS13), and Functional Assessment Questionnaire (FAQ), at baseline and were reassessed
through interviews over subsequent years. Although these tests all assess cognitive impairment, their main focuses
vary. ADAS11 consists of 11 items that correspond to words, spoken language, and simple commands, ADAS13
incorporates delayed recall and digit cancellation tasks further, and FAQ mainly examines the ability to complete
daily life activities, such as preparing a balanced meal or traveling outside one’s neighborhood. During the mul-
tiple study phases that were conducted for 9 years, some patients were quickly diagnosed as having AD or other
dementia-related diseases based on the specific inclusion criteria, whereas some patients reflected a normal aging pat-
tern or even remained stable. In this longitudinal study, our primary goal is to examine the effects of time-invariant
markers and time-variant cognitive impairment on AD hazards. Toward this goal, the development of a statisti-
cal model that summarizes the longitudinal cognitive decline and it’s association with the progression of AD is
required.

Joint modeling of longitudinal and survival data1,2 is a popular framework for investigating the relationship between
repeated measurements and time-to-event outcomes. Such joint models basically consist of two parts, namely, a
mixed-effects model for characterizing the trajectory of longitudinal measures and a survival model, such as a propor-
tional hazard (PH) model,3 to link the underlying random effects to the survival of interest. Owing to the superiority
to simultaneously reveal the structure of repeated measurements and it’s association with time-to-event process, joint
modeling of longitudinal and survival data has attracted significant attention in medical research.4-7 Such kinds of joint
models have previously been applied to the analysis of repeated measurement of cognitive decline and time-to-AD. For
instance, Hashemi et al8 used a joint modeling approach to analyze dementia and the score of a psychometric test,
namely, the Mini Mental State Examination (MMSE). Jacqmin-Gadda et al9 developed a random change-point model
to jointly model the score of Benton Visual Retention Test and dementia. Recently, Li and Luo10 incorporated func-
tional data into joint modeling and demonstrated the association between time-to-AD and longitudinal measurement
of ADAS11.

In the ADNI study, cognitive impairment is characterized by multiple cognitive measures from various perspectives.
However, existing methods assess patients’ cognitive impairment through a single cognitive test. The analysis in Section 4
shows that such an incomplete measurement of cognitive impairment reduces model interpretability and prediction
accuracy. Moreover, previous studies (eg, Ibrahim et al5) restrict individual trajectories to be a linear form with random
intercept and time slope. Such a linearity assumption is violated in the ADNI study and shown in Section 4 to result in
lower discriminative capacity in the diagnosis of AD. We propose a new joint model to address these shortcomings. First,
we introduce a dynamic factor analysis model to characterize time-variant cognitive impairment using ADAS11, ADAS13,
and FAQ together. The introduction of factor analysis can integrate the information reflected by various cognitive assess-
ments, but avoids the multicollinearity problem caused by their high correlations, thereby eliminating information loss,
reducing measurement errors, and enhancing model interpretability. Then, we establish a spline-based random coeffi-
cient trajectory model to reveal possibly nonlinear trajectories of patients’ cognitive decline. Such a nonparametric model
relaxes the linearity assumption in the previous studies and is thus highly flexible in capturing the complex patterns of
cognitive impairment trajectories. Finally, we incorporate the trajectory function into a PH model to examine the effects
of time-invariant markers and time-variant cognitive impairment on AD hazards. We develop a Bayesian approach cou-
pled with an efficient Markov chain Monte Carlo (MCMC) algorithm to perform statistical inference because it shows
powerful and efficient management of complex models with latent variables and allows for incorporating useful prior
knowledge.

In Section 2, we introduce the proposed joint model with multivariate longitudinal and survival data. Associated
model identifiability issues are also discussed. Section 3 presents the Bayesian approach. Prior specification and posterior
inference are also described. Section 4 applies the proposed method to the ADNI dataset. Section 5 demonstrates the
empirical performance of the proposed method through simulation studies. Section 6 concludes the study. Technical
details are provided in the Web Appendix.
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2 JOINT MODELS

We propose a joint model that involves three components. The first component is a dynamic confirmatory factor analysis
(CFA) model, the second component is a spline-based random coefficient trajectory model, and the third component is a
PH model.

For subject i and jth measurement, let yij(t) be a p × 1 vector of the observed variables at time t. For brevity, we denote
yij = yij(tij) for i = 1,… ,n and j = 1,… ,mi, where mi is the number of measurements for subject i. The dynamic CFA
model used to characterize time-variant latent variables through multivariate time-variant observed variables is defined
as follows:

yij = B𝜼ij + 𝝐ij, j = 1,… ,mi, (1)

where B is a p × q (p > q) matrix of factor loadings; 𝜼ij is a q × 1 vector of latent variables for subject i at time j; and
𝝐ij is a p × 1 vector of random errors independent of 𝜼ij and distributed as N(0,𝚿) with diagonal matrix 𝚿. In substan-
tive research, we may obtain prior knowledge about p, q, and B based on the objectives of the study, the meaning of
the observed variables suggested by subject experts, and/or the existing literature. For example, in the ADNI study in
Section 5, the existing medical literature suggested that cognitive impairment is measured using several neuropsycholog-
ical or behavioral assessments, including ADAS11, ADAS13, and FAQ. Thus, p = 3, q = 1, and B is a 3 × 1 factor loading
matrix.

Henceforth, we assume a unidimensional 𝜂ij (q = 1) to simplify notations. An extension to the case of q > 1 is
straightforward. For the longitudinal latent variable 𝜂ij, we consider a random coefficient model with splines, as follows:

𝜂ij = hi(tij) =
L∑

l=1
uilWl(tij), (2)

where ui = (ui1,ui2,… ,uiL)T is a L × 1 vector of time-invariant subject-specific random coefficients; ui ∼ N(0,𝚽), 𝚽 is an
unknown covariance matrix; Wl(⋅)s are basis functions, such as piecewise polynomials or natural cubic splines,11 and L
is the number of basis functions that are used to estimate the smoothing individual trajectory hi(⋅). Previous studies12,13

indicate that a small number of knots (eg, L ∈ [5, 10]) are sufficient to provide a good approximation for functions with
moderate curvature. It is common to choose L to be less than or equal to the maximum number of measurements because
we only have observations in these discrete follow-up time points. Alternatively, one can also set a relatively large L
and then use penalized splines14,15 or adopt model-selection criteria (eg, BIC or DIC) to choose the number of knots to
avoid overfitting. Such a personalized model framework enables sufficient flexibility to specify the potential nonlinear or
fluctuated longitudinal trajectories, in particular, longitudinal trajectories of cognitive impairment.

We follow the existing literature of ADNI study10,16,17 to consider a PH model to investigate the potential risk factors
of AD hazards. For subject i, let Ti denote the failure time of interest, zi be an r × 1 vector of the observed covariates at
the baseline, and Ci be the censoring time that is conditionally independent of Ti given zi and ui. Instead of observing
all Ti for all i, we observe Vi = min(Ti,Ci). The failure indicator is denoted as Δi = I(Ti ≤ Ci), where I(⋅) is the indicator
function. The PH model is defined as follows:

𝜆(t|zi,ui) = 𝜆0(t) exp
(
𝜷Tzi + 𝛼hi(t)

)
, (3)

where 𝜆(t|⋅) is the hazard function of Ti, 𝜆0(t) is an unspecified baseline hazard function, 𝜷 is a r × 1 vector of the regres-
sion parameters, and 𝛼 is a scale parameter to adjust the effect of individual trajectories of latent variables on the hazard
function. The PH model (3) enables the assessment of time-invariant and time-variant risk factors. For instance, in the
ADNI example in Section 4, the effects of baseline covariates, including marital status, gender, education level, and
APOE-𝜖4 genotypes, and time-variant cognitive impairment on the risk of AD can be simultaneously examined though
the proposed PH model.

The proposed model includes variables (yij, zi,Vi,Δi, 𝜂ij,ui), in which (yij, zi,Vi,Δi) are observed and (𝜂ij,ui) are latent.
While CFA model (1) measures 𝜂ij based on the information of yij, trajectory model (2) constructs varying-coefficient
splines with random effect ui to describe the trajectory function of 𝜂ij, hi(t), and PH model (3) examines the effects
of hi(t) and baseline covariate zi on survival outcome (Vi,Δi). Compared with results of the existing studies on the
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progression to AD, the proposed joint model defined by (1)-(3) can accommodate the following additional features. First,
the dynamic CFA model (1) measures latent traits through multiple observed variables over time. Such factor analysis
technique provides a feasible methodology for a comprehensive characterization and attractive interpretation of latent
cognitive impairment, eliminates possible multicollinearity induced by highly correlated observed cognitive assessments,
and reduces model dimensionality without losing information.18-22 Second, the latent trajectory model (2) determines
flexibly the patterns of individual trajectories and addresses within-subject dependency through subject-specific random
coefficients. The spline-based specification provides sufficient flexibility to mostly uncover individual trajectories of cog-
nitive decline during the long-term cohort study. Lastly, the PH model (3) not only examines how time-invariant covariates
influence the risk of AD but also assesses the dynamic effect of individual trajectories of cognitive decline on time to
conversion to AD.

2.1 Model identifiability

The dynamic CFA model (1) is unidentifiable without imposing appropriate identifiability constraints on the parameters.
Specifically, for an arbitrary non-singular matrix M, we have

yij = B𝜼ij + 𝝐ij = BMM−1𝜼ij + 𝝐ij = B∗𝜼∗ij + 𝝐ij, (4)

where B∗ = BM, 𝜼∗ij = M−1𝜼ij ∼ N[0,M−1WT
ij𝚽Wij(M−1)T], and Wij = (W1(tij),… , WL(tij))T , indicating that parameters

B and 𝚽 are not simultaneously estimable without imposing identifiability constraint. In the current study, we follow
a common practice in latent variable models23 to fix additional elements in B at preassigned values, such that the only
possible matrix satisfying (4) is the identity matrix. Details of such identifiability constrains and an illustrated example
are discussed in the Web Appendix.

3 BAYESIAN ANALYSIS

3.1 Estimation

The baseline hazard function 𝜆0(t) is unknown, and providing the evidence of a parametric hazard function shape is
usually difficult in substantive studies. We follow the existing literature (eg, Ibrahim et al,24 Yin and Ibrahim,25 Lee et al,16

Pan et al26) to approximate 𝜆0(t) through a commonly used piecewise constant distribution. One can also use B-splines27,28

to obtain a more flexible and smooth estimate of 𝜆0(t) (eg, Zhou et al29). In this study, we assume that 𝜆0(t) is piecewise
constant, as follows:

𝜆0(t) = 𝜆g, for sg−1 < t ≤ sg, g = 1,… ,G, (5)

where 0 = s0 < s1 < · · · < sG define the intervals for 𝜆0(t) and are selected according to the quantiles of Ti with sG >

maxi Ti for i = 1,… ,n; and 𝝀 = (𝜆1,… , 𝜆G)T . We define vig = 1 if Ti ∈ (sg−1, sg] (ie, subject i fails or is censored in the gth
interval) and 0 otherwise.

Denote 𝜽 = (𝛼, 𝜷,𝝀,B,𝚽,𝚿). We first specify the prior distribution for each element of 𝜽. Similar to previous
studies,21,25 we consider the prior distributions for parameters 𝝀, 𝜷, and 𝛼 as follows. For g = 1,… ,G,

𝜆g ∼ Gamma(a1, a2), 𝜷 ∼ N(𝝁𝛽 , 𝜎
2
𝛽
Ir), 𝛼 ∼ N(𝜇𝛼, 𝜎

2
𝛼), (6)

where a1, a2,𝝁𝛽 , 𝜎
2
𝛽
, 𝜇𝛼 , and 𝜎2

𝛼 are hyperparameters with pre-assigned values, and Ir is the r-dimensional identity matrix.
Alternatively, we can also assign prior correlation among𝜆gs using a prior𝝋 ∼ N(𝝁𝜙,𝚺𝜙), where𝜑g = log(𝜆g), g = 1,… ,G.

For factor loadings B and variance/covariance matrix 𝚽 and 𝚿, we specify the following conjugate prior distributions.
For k = 1,… , p,

bk ∼ N(bk0, 𝜓k𝚺bk0), 𝜓−1
k ∼ Gamma(a𝜖0, b𝜖0), 𝚽−1 ∼ Wishart(R0, 𝜌0), (7)
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where 𝜓k is the kth diagonal element of 𝚿; bk is the kth row of B; and bk0, 𝚺bk0, a𝜖0, b𝜖0, 𝜌0, and R0 are pre-assigned
hyperparameters.

Notably, the prior distributions of 𝜆g,bk, 𝜓
−1
k , and 𝚽−1 are conjugate priors, which lead to manageable posterior dis-

tributions (see Web Appendix.3) for efficient posterior inference. The preassigned hyperparameters represent available
prior information. For instance, if we have some prior knowledge about 𝜷, then we may assign 𝝁𝛽 in accordance with the
prior knowledge and 𝜎𝛽 to a small value to reflect accurate information. If the prior information of 𝜷 is unavailable, then
we may assign 𝝁𝛽 to an ad hoc value (eg, 0) and 𝜎𝛽 to a large value to reflect vague information. The hyperparameters
involved in other prior distributions can be assigned in a similar manner. Detailed discussion can be found in Song and
Lee.23

The Bayesian estimate of 𝜽 can be obtained through the mean or mode of the posterior samples drawn from p(𝜽|Y).
However, direct sampling from p(𝜽|Y) is intractable because of the existence of latent variables. Instead, we work on
p(𝜽,U|Y) and use the Gibbs sampler to iteratively simulate each unknown from its full conditional distribution. The
details of the posterior inference are provided in the Web Appendix.

3.2 Dynamic prediction

Suppose a new subject i comes to the clinic at time t with a set of past multivariate longitudinal measurements {t}
i =

{yij; j = 1,… ,mi, timi ≤ t} and baseline covariates zi. We focus on a time frame (t, t + 𝛿], within which an intervention
for improving subjects’ survival is available. Let n = {Vi,Δi, yi, zi; i = 1,… ,n} denote the sample, based on which the
proposed model is fitted. The conditional probability of survival time t + 𝛿 given survival up to t can be calculated as
follows:

𝜋i(t + 𝛿|t) = Pr
(

Ti ≥ t + 𝛿|Ti > t,{t}
i , zi,n

)
= ∫ ∫ Pr

(
Ti ≥ t + 𝛿|Ti > t,{t}

i , zi,ui,n;𝜽
)

p
(

ui|Ti > t,{t}
i , zi,n;𝜽

)
p(𝜽|n)duid𝜽

= ∫ ∫
Pr(Ti ≥ t + 𝛿|zi,ui,n;𝜽)

Pr(Ti ≥ t|zi,ui,n;𝜽)
p
(

ui|Ti > t,{t}
i , zi,n;𝜽

)
p(𝜽|n)duid𝜽, (8)

where Pr(Ti ≥ t|zi,ui,n;𝜽) = exp
{
−
∑G

g=1vig
∑g

k=1∫ min(sk ,t)
sk−1

𝜆k exp
[
𝜷Tzi + 𝛼hi(s)

]
ds
}

, and p(𝜽|n) is the posterior distri-
bution of the parameters given the observed data n. Here, the sample size n is assumed to be sufficiently large, so that
the standard asymptotic Bayesian theory30(sect.10.6) can be applied, and p(𝜽|n) can then be approximated by N(�̂�, ̂) with
�̂� being the Bayesian estimate of 𝜽 and ̂ = ̂var(�̂�). Consequently, a Monte Carlo estimate of 𝜋i(t + 𝛿|t) can be obtained
as follows:

�̂�i(t + 𝛿|t) = 1
J

J∑
j=1

Pr
(

T∗
i ≥ t + 𝛿|zi,u(j)

i ,n;𝜽(j)
)

Pr
(

T∗
i ≥ t|zi,u(j)

i ,n;𝜽(j)
) , (9)

where 𝜽(j) ∼ N(�̂�, ̂), u(j)
i = (u(j)

i1 ,… ,u(j)
iL )

T ∼ p(ui|Ti > t,{t}
i , zi,n;𝜽), and J is the number of Monte Carlo samples.

Similarly, latent variable 𝜂i,t+𝛿 can be estimated by

�̂�i,t+𝛿 =
1
J

J∑
j=1

L∑
l=1

u(j)
il Wl(t + 𝛿). (10)

Other prediction results, such as predicted SEs and credible intervals, can be obtained in a similar manner by
calculating the summaries of the Monte Carlo samples.

The prediction of survival probability and latent cognitive impairment are not static and can be dynamically updated
based on the newest measurements of cognitive tests. Suppose that subject i has not suffered from AD by time t + 𝛿.
Then, the histories of cognitive measurements are updated to {t+𝛿}

i = {yij; j = 1,… ,mi, timi ≤ t + 𝛿}. Hence, we can
update the posterior distribution to p(ui|Ti > t + 𝛿,{t+𝛿}

i , zi,n;𝜽) and obtain the updated predictive survival probability
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�̂�i(t + 𝛿′|t + 𝛿) and latent cognitive impairment �̂�i,t+𝛿′ with 𝛿′ > 𝛿. The performance of the proposed dynamic prediction
procedure is evaluated by the time-dependent integrated area under the receiver operating characteristic curve (AUC)
and Pearson correlation. Specifically, AUC measures how well the proposed model can discriminate patients who will
experience the onset of AD from patients who will not.7,31,32 Given a random pair of subjects (i1, i2), the AUC value can
be calculated as follows:

AUC(t, 𝛿) = P(𝜋i1(t + 𝛿|t) < 𝜋i2(t + 𝛿|t)|{Ti1 ∈ (t, t + 𝛿]} ∩ {Ti2 > t + 𝛿}). (11)

If subject i1 suffers from AD within the time frame (t, t + 𝛿], whereas subject i2 does not, a good prediction model is
expected to assign a higher survival probability for subject i2, thereby resulting in a higher AUC value. Given that subjects’
time-to-AD are not fully observed in the ADNI dataset, we follow Andrinopoulou et al7 to assign additional weights for
the pairs of subjects who cannot be compared due to censoring. The Pearson correlation, which assesses the prediction
accuracy of cognitive impairment, is calculated between the predicted latent cognitive impairment �̂�it and its true value
𝜂it.33 However, 𝜂it is indirectly observable. Thus, we first obtain its estimate �̃�it based on a separate CFA model (1) and
then calculate the Pearson correlation between �̂�it and �̃�it.

Notably, some machine learning techniques, such as gradient boosting and Bayesian additive regression tree, may
provide comparable or even higher prediction accuracy in the ADNI study. However, compared with the proposed sta-
tistical model, such kinds of black-box prediction procedures may not be preferable in the clinical trial of AD due to its
loss of interpretability and low stability. If an opaque machine learning method is adopted, the scientific findings that
reveal the effects (directions and magnitudes) of risk factors on AD hazards remain completely hidden because the model
only gives prediction without explanations. By contrast, a statistical model enables doctors/neuroscientists to discover
the mechanism of AD progression and how important risk factors affect AD hazards, thereby facilitating early diagnosis
or efficient prevention of AD. Furthermore, patients tend to trust and accept the prediction results of a statistical model
with justifiable analyses rather than those of a black-box prediction. This is essential for patients to better cooperate with
doctors during treatment.

4 ALZHEIMER’S DISEASE NEUROIMAGING INITIATIVE DATA
ANALYSIS

4.1 Alzheimer’s disease neuroimaging initiative

ADNI was first launched in 2004 under the leadership of Dr. Michael W. Weiner. It was funded as a private-public part-
nership with $67 million donated by 20 companies, the Foundation for the National Institute, and the National Institute
of Aging. The first 5-year study (ADNI-1) was extended by 2 years in 2009 by a Grand Opportunities grant (ADNI-GO),
and in 2011 and 2016 by further competitive renewals of the ADNI-1 grant (ADNI-2 and ADNI-3, respectively). The over-
arching objective of ADNI is to detect AD at the earliest possible stage and identify ways to track the disease progression
with biomarkers. On the basis of this objective, ADNI recruited participants between the ages of 55 and 90 years old at
57 cities in the United States and Canada and collected their imaging, genetic, clinical, and cognitive data at baseline, 3,
6, 12, 18, 24 months and every following 12 months during the cohort study. The first phase of ADNI (ADNI-1) aimed to
enroll 800 adults, including approximately 200 people for elderly controls, 400 people with MCI, and 200 people with early
AD. Subsequently, the three extensions, ADNI-GO, ADNI-2, and ADNI-3, kept the existing participants who enrolled in
the former study and further recruited 200, 450, and 371 new participants, respectively, into the cohort. For up-to-date
information about ADNI, see adni.loni.usc.edu.

4.2 Data description

We focused on 715 patients who enrolled in ADNI-1, ADNI-2, or ADNI-3 and suffered from MCI at baseline. Among the
715 MCI patients, the number of follow-up visits varied from 4 to 14, and the maximum visiting time is 132 months.

We considered the longitudinal scores of ADAS11, ADAS13, and FAQ over time for each MCI patient. ADAS is a
neuropsychological assessment that tests written and verbal responses of subjects. These responses are related to funda-
mental cognitive functions. The total score is usually reported as a composite scale of 11 (ADAS11) or expanded to 13
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F I G U R E 1 Longitudinal measurement of ADAS11, ADAS13, and FAQ of 9 patients in the ADNI study. Grey dot-dash line: ADAS11
scores; yellow dashed line: ADAS13 scores; blue solid line: FAQ scores [Colour figure can be viewed at wileyonlinelibrary.com]

items (ADAS13) and ranges from 0 to 70 or 85. A high score indicates poor cognitive ability. Specific tasks in ADAS11
include word recall, naming objects and fingers, commands, constructional praxis, orientation, word recognition, and
language. However, some other cognitive domains, such as attention and concentration, planning and executive function,
and praxis, are identified as important treatment targets of anti-dementia drugs but are not assessed by the ADAS11.34

Such issues are additionally addressed by ADAS13 through a test of delayed word recall and a number cancellation or
maze task. By contrast, FAQ is a functional and behavioral assessment with 10 items. It tests a participant’s capability to
perform daily life tasks in multiple domains, such as visuospatial abilities, planning, organization, and divided attention.
FAQ score ranges from 0 to 30, with high scores reflecting great functional dependence. Although ADAS11, ADAS13,
and FAQ all assess individual’s cognitive impairment, they reflect the cognitive dysfunction from different aspects and do
not replace one another. Figure 1 illustrates the observed longitudinal scores of these three cognitive assessments from
9 participants. Apparently, if one uses ADAS11 only to measure cognitive impairment, then the insufficient information
cannot reveal the risk that is reflected by abnormally high scores of FAQ and ADAS13, leading to incorrect conclusion
for patient with normal neuropsychological function but severe dysfunction in daily activities.

According to the group specific inclusion criteria shown in the general procedures manual of the ADNI study, subjects
who met all the following conditions was diagnosed clinically as AD: (i) memory complaint by subject or study partner
that is verified by a study partner; (ii) abnormal memory function documented by scoring below the education adjusted
cutoff on the Logical Memory II subscale from the Wechsler Memory Scale—revised; (iii) Mini-Mental State Examination
(MMSE) between 20 and 26; (iv) Clinical Dementia Rating = 0.5; and (v) NINCDS/ADRDA criteria for probable AD.

http://wileyonlinelibrary.com
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Notably, in the ADNI dataset, a total of four cognitive measures, such as ADAS11, ADAS13, FAQ, and MMSE, are available.
Considering that MMSE was adopted in the diagnosis of AD (the outcome of interest), we excluded it and used all the
remaining measures to characterize cognitive impairment to avoid circularity. Among the 715 MCI patients in the current
study, only 294 have progressed to AD during the cohort study and 421 remained at the MCI stage. The time to conversion
to AD was the period from the baseline to the date of the first diagnosis of AD or the date of the last visit, whichever came
first. The censoring rate of AD was approximately 59%.

Besides the multivariate longitudinal and time-to-event data, we also included patient’s clinical and genetic variables
at baseline. The clinical characteristics include gender (0 = male , 1 = female), marital status (0 = not married, 1 =
married), and education level. The apolipoprotein E (APOE)-𝜖4, a risk factor for early onset AD,35 is included as a genetic
covariate. In the demographic information, 424 individuals are male and 191 are females. Among these individuals, 276
carry one APOE-𝜖4 allele, 80 carry two APOE-𝜖4 alleles, and 359 are non-carriers. For marital status, 558 were married
and 157 were not married (divorced, widowed, or never married) at baseline. On average, the patients have 16.0 years of
education with a SD of 2.8 years.

4.3 Data analysis

We considered the proposed model defined by (1)-(3) with p = 3 and q = 1. Then, we grouped ADAS11 (yij,1), ADAS13
(yij,2), and FAQ (yij,3) into a latent variable “cognitive impairment (𝜂ij)” for i = 1,… ,n; j = 1,… ,mi as follows:

yij = B𝜂ij + 𝝐ij, BT = (1∗ b2 b3), (12)

where the first element of B was fixed at 1 to obtain an identified model. The trajectory of individual’s cognitive
impairment is further described as follows:

𝜂ij = hi(tij) =
L∑

l=1
uilWl(tij). (13)

In this study, we used a simple version of natural cubic spline derived from a truncated power series basis function11

to approximate the trajectories: W1(tij) = 1,W2(tij) = tij, and Wl+2(tij) = el(tij) − eL−1(tij) for l = 1,… ,L − 2, where el(tij) =
[(tij − 𝜅l)3

+ − (tij − 𝜅L)3
+]∕(𝜅L − 𝜅l), and 𝜅l, l = 1,… ,L are the knots taken in the range of tij. We chose 6 most-visited

follow-up time (more than 200 subjects recorded in this visit), 6, 12, 18, 24, 36, and 48 months, as the knots (L = 6) in
this study. For the PH model, we included time-invariant covariates, namely, marital status (zi1), gender (zi2), education
level (zi3), and APOE-𝜖4 genetic covariate coded using two dummy variables: “one APOE-𝜖4 allele carrier (zi4)” and “two
APOE-𝜖4 alleles carrier (zi5)” at baseline as well as time-variant covariate cognitive impairment hi(t) as follows:

𝜆(t|zi,ui) = 𝜆0(t) exp

( 5∑
r=1

𝛽rzir + 𝛼hi(t)

)
. (14)

Let tij = t̃ij∕100 for the purpose of reducing the scale of tij. The continuous variables yij,1, yij,2, yij,3, and zi3 were stan-
dardized prior to analysis. We used G = 10 sub-intervals to model the piecewise baseline hazard function. The cut points
s0,… , sG that define these sub-intervals were set as the quantiles of the observed survival times. The prior distributions in
(6) and (7) with prior inputs were adopted as follows:𝝁𝛽 = 0, 𝜇𝛼 = 0, 𝜎2

𝛽
= 𝜎2

𝛼 = 1,b10 = 0,𝚺b10 = I3, a𝜖0 = 9, b𝜖0 = 4, 𝜌0 =
7,R0 = 4I6, a1 = 2, and a2 = 0.01.

We ran several parallel sequences from different starting values of parameters to check convergence of the MCMC
algorithm and found that the algorithm converged within 30 000 iterations. Thus, we collected 30 000 posterior observa-
tions after 30 000 burn-in iterations to conduct Bayesian inference. Table 1 presents the Bayesian estimates together with
their SE estimates (in parentheses) for all the parameters. The Bayesian estimates of baseline hazard 𝜆g, g = 1,… , 10 are
given in Table S5 of Web Appendix. Several findings were obtained as follows:

First, the estimated factor loadings are b̂2 = 1.014 (0.007) and b̂3 = 0.773 (0.012), which imply strong association
between the latent variable (cognitive impairment) and it’s observed indicators (ADAS11, ADAS13, and FAQ). Fur-
thermore, we used two indices, namely, construct reliability and average variance extracted (AVE),36 to check the



KANG et al. 9

T A B L E 1 Parameter estimates in the analysis of ADNI data

Mp: Joint model with latent variables Mind: Conventional joint model

Variable Est SD Variable Est SD

Marital status(𝛽1) −0.337∗ 0.149 Marital status(𝛽1) −0.291 0.185

Gender(𝛽2) 0.234 0.130 Gender(𝛽2) −0.046 0.156

Education(𝛽3) −0.041 0.057 Education(𝛽3) 0.006 0.067

One APOE-𝜖4 allele (𝛽4) 0.073 0.126 One APOE-𝜖4 allele (𝛽4) −0.073 0.155

Two APOE-𝜖4 alleles (𝛽5) 0.364∗ 0.170 Two APOE-𝜖4 alleles (𝛽5) 0.161 0.213

ADAS11 (𝛼1) −2.084∗ 0.341

Cognitive impairment (𝛼) 1.420∗ 0.068 ADAS13 (𝛼2) 3.197∗ 0.390

FAQ (𝛼3) 1.209∗ 0.108

b2 1.014∗ 0.007

b3 0.773∗ 0.012

𝜓1 0.109∗ 0.003

𝜓2 0.083∗ 0.002

𝜓3 0.466∗ 0.010

𝜑11 0.348∗ 0.020

𝜑22 5.472∗ 0.356

𝜑33 24.129∗ 2.420

𝜑44 0.508∗ 0.177

𝜑55 0.470∗ 0.167

𝜑66 0.528∗ 0.182

Abbreviation: SD, standard deviation.
∗Indicates significant parameters under 0.05 significance level.

reliability and validity of these three measures. The construct reliability is defined as (
∑3

k=1bk)2

(
∑3

k=1bk)2+
∑3

k=1𝜓k
, and AVE is defined

as
∑3

k=1b2
k∑3

k=1b2
k+

∑3
k=1𝜓k

, where bk is the factor loading of the kth measure and 𝜓k is the variance of the associated error term. The
construct reliability and AVE of the proposed model are 0.97 and 0.92, respectively, which far exceed the commonly used
thresholds 0.7 and 0.5. Therefore, the three measures are valid and reliable in measuring the cognitive impairment.

Second, marital status [𝛽1 = −0.337(0.149)] exerts a significant negative effect on AD hazards, thereby indicating that
married people have a lower risk of developing AD than unmarried people. This finding is in line with the published
reports.37 On the contrary, the effect of two APOE-𝜖4 alleles [𝛽5 = 0.364(0.170)] on cognitive impairment is significantly
positive, implying that two APOE-𝜖4 alleles carriers are more likely to develop AD than one or none APOE-𝜖4 allele car-
riers. This result agrees with several published reports38,39 and implies that APOE-𝜖4 alleles are important risk factors
in cognitive dysfunction. In addition, gender [𝛽2 = 0.234(0.130)] has a marginally significant positive effect on AD haz-
ards because its 95% credible interval includes zero but its 90% credible interval ([0.031, 0.466]) does not include zero.
Hence, females have a relatively higher risk of developing AD than males. This finding is in line with those of published
reports40,41 and may be related to the fact that the advantages of mitochondria, such as protecting against amyloid-𝛽 toxic-
ity, generating less reactive oxygen species, and releasing less apoptogenic signals, are eventually lost for old women. The
other covariates, such as education level and carrying one APOE-𝜖4 allele, hardly influence AD hazards when marital
status, gender, two APOE-𝜖4 alleles, and the individual trajectories of cognitive impairment are controlled.

Third, the estimates of elements in the covariance matrix 𝚽 of the random effect are significant, which confirms
the existence of heterogeneity among patients’ cognitive decline. Figure 2 presents subjects’ estimated trajectories of
longitudinal cognitive impairment during MCI phase based on the posterior means of the random effects. Apparently,
the cognitive impairment exhibits more pronounced ascending trend for patients who would later convert to AD (Δi = 1)
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F I G U R E 2 Patients’ estimated trajectories of longitudinal cognitive impairment during MCI phase. Left panel: patients who would
stay at the MCI stage (Δi = 0); right panel: patients who would later convert to AD (Δi = 1)

than for patients who would not (Δi = 0). Although previous studies (eg, Chen et al,42 Cloutier et al43) have reported that
characterizing the pattern of cognitive decline during MCI phase is crucial to early diagnosis of AD, their results are based
only on a single cognitive measure and thus fail to reveal the overall pattern and effect of multiple measures of cognitive
impairment in MCI-AD conversion. By contrast, our obtained result provides a potential of introducing the trajectory
function of an integrated measure of cognitive impairment as a marker of AD progression and is therefore beneficial to
early diagnosis of AD. When new drugs for AD treatment are available, such integrated cognitive measure may also be
used for selection of cases to evaluate drug efficiency in slowing the disease progression.

Fourth, for most of the patients (over 81%) who had suffered from AD, the posterior means of ui2 and ui3 are signif-
icantly positive. Such random effects correspond to the second and third basis splines, namely, W2(t) = t and W3(t) =
[(t − 𝜅1)3

+ − (t − 𝜅6)3
+]∕(𝜅6 − 𝜅1) − [(t − 𝜅5)3

+ − (t − 𝜅6)3
+]∕(𝜅6 − 𝜅5), where W3(t) > 0 if t > 𝜅1 and W3(t) = 0 if 0 ≤ t ≤ 𝜅1.

This result indicates that patients’ cognitive impairment shows linear deteriorating trends from baseline to 6 months
(𝜅1 = 6∕100 = 0.06), but nonlinear and more pronounced deteriorating trends after 6 months. This finding may elicit a
highly targeted treatment in AD prevention. The current treatment for mild to moderate cognitive impairment includes
medications for memory loss, such as cholinesterase inhibitors,44 and non-drug approaches for behaviors, such as physi-
cal, emotional, and social stimulation. The obtained result provides evidences of an accelerate disease deterioration over
time and suggests an increase in drug doses or non-drug treatment, such as the validation therapy45 provided by caregivers
for patients who have suffered from MCI for more than 6 months.

Fifth, the trajectory function of cognitive impairment exhibits a significant positive effect on AD hazards [�̂� =
1.420(0.068)], which implies that people with severe cognitive impairment are at high risk of developing AD. Further-
more, the strong association between cognitive impairment and AD hazards confirms that a comprehensive measure of
cognitive impairment can be used as a pre-diagnosis for AD.
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To assess how the above results are sensitive to the spline parameters, we let the number of knots in the spline approx-
imation vary from 3 to 9 and changed the spline basis function from natural cubic splines to cubic Hermite splines, of
which each piece is a third-degree polynomial specified in Hermite form. The knots were chosen as the first l elements in
{6, 12, 18, 24, 36, 48, 60, 72, 84} months, for l = 3,… , 9. We reanalyzed the ADNI dataset using the disturbed number of
knots and basis functions. The nonlinear patterns of cognitive impairment trajectories and other results obtained using
different spline parameters are similar to those presented above and not reported. Moreover, we conducted sensitivity
analysis with ad hoc disturbances to the current prior inputs and found that the Bayesian estimates (see Figure S4 of Web
Appendix) were robust to the prior inputs under consideration.

4.4 Model comparison

To check the necessity of a nonlinear trajectory model, we reanalyzed the ADNI dataset by using a simpler joint model
with linear trajectory, denoted as Mlinear. Figure 3 presents the estimated and true dynamic cognitive impairment trajec-
tories of 9 randomly selected patients. The estimated trajectories of 𝜂ij based on the proposed model, denoted as Mp, are
reasonably close to those obtained from a separate factor analysis, indicating the satisfactory performance of the proposed
joint model in describing the complex individual trajectories of cognitive decline. By contrast, Mlinear that assumes a lin-
ear trajectory of 𝜂ij cannot reveal the nonlinear patterns of patients’ cognitive impairment. Furthermore, we compared
the out-of-sample prediction performances of the two models. We focused on the time frame with t = 12, 18 months and
𝛿 = 6, 24 months in predicting the survival probability �̂�(t + 𝛿|t) and chose t = 12 months and 𝛿 = 6, 12, 24 months in
predicting the latent cognitive impairment �̂�i,t+𝛿 . The full dataset was randomly split into a training set with 515 subjects
and a test set with 200 subjects. The random split was repeated 100 times. For each split, we fitted Mp and Mlinear to the
training set and then calculated AUC and Pearson correlation based on the test set. Table 2 (upper panel) presents the
AUC values for Mp and Mlinear. The AUC values of Mp are consistently higher than those of Mlinear in all combinations of t
and 𝛿, indicating that the proposed joint model with flexible nonlinear trajectory has better discriminative capability than
the simpler model Mlinear in the diagnosis of AD. In addition, the Pearson correlations of �̂�ij and �̃�ij calculated based on Mp
at 𝛿 = 6, 12, and 24 months are 0.862, 0.802, and 0.713, respectively, whereas those of Mlinear are 0.856, 0.788, and 0.691,
respectively. The proposed model achieves higher prediction accuracy in all scenarios, which reconfirms the superiority
of the flexible nonlinear trajectory in describing the complex individualized dynamic pattern of cognitive impairment.

To investigate the necessity of latent variable, we reanalyzed the dataset using a conventional joint model by
considering three independent trajectory models for ADAS11 (yij,1), ADAS13 (yij,2), and FAQ (yij,3). In this conven-
tional model, denoted by Mind, instead of grouping the three longitudinal measurements into a latent variable 𝜂ij
and then examining the overall effect of the trajectory of 𝜂ij on the hazard function, we independently modeled
the individual trajectories of yij,1, yij,2, and yij,3 and then examined their separate effects on the hazard function, as
follows:

𝜆(t|zi,ui) = 𝜆0(t) exp

( 5∑
r=1

𝛽rzir + 𝛼1h1i(t) + 𝛼2h2i(t) + 𝛼3h3i(t)

)
, (15)

where h1i(t), h2i(t), and h3i(t) are the trajectories of yij,1, yij,2, and yij,3, respectively, as described by Model (2). The DIC
values of Mp, Mlinear, and Mind are 37914.84, 38292.97, and 35520.77, respectively. Although Mind shows the lowest DIC
value, it yields misleading predictor effects due to multicollinearity. Table 1 provides a comparison of the estimation results
obtained using the proposed joint model and Mind without latent variable [see (15)]. The estimated effects of marital
status, two APOE-𝜖4 alleles, and gender were significant or marginally significant in Mp but became insignificant in Mind.
Moreover, the effect of ADAS11 on AD hazards was reversed [�̂�1 = −2.084(0.341)], implying that high ADAS11 scores
(severe cognitive impairment) were associated with low AD hazards. Thus, Mind overlooked the important risk factors
of AD and produced contradictory results. Further verification showed that the pairwise sample correlations among the
scores of ADAS11, ADAS13, and FAQ were 0.977, 0.669, and 0.689. Such high correlations induced the multicollinearity
problem and misleading results of Mind. We also conducted the out-of-sample prediction to compare Mp and Mind. Table 2
(upper panel) presents their AUC values under t = 12, 18 months and 𝛿 = 6, 24 months. The AUC values of Mp are
generally greater than those of Mind, indicating that the proposed model possesses higher prediction capacity than Mind.
The only exception occurs in the time frame [t = 18 month, 𝛿 = 6 month], where the AUC value of Mp is slightly lower
than that of Mind. This phenomenon was also reported by existing literature (eg, Kutner et al,46 Weiss47), which revealed
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F I G U R E 3 Expected cognitive impairment of 9 randomly selected patients at each visit. Grey dot: the values of 𝜂ij calculated using a
separate CFA model; blue solid curve: cognitive impairment trajectory estimated using the proposed model Mp; yellow dashed curve: cognitive
impairment trajectory estimated using a simpler model Mlinear with linear trajectory [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 2 AUC values of competing models in the ADNI study

t = 12 month t = 18 month

Model 𝜹 = 6 month 𝜹 = 24 month 𝜹 = 6 month 𝜹 = 24 month

Mp 0.851 0.841 0.855 0.839

Mlinear 0.843 0.831 0.852 0.831

Mind 0.847 0.803 0.861 0.803

MFULL 0.835 - 0.840 -

MADAS11 0.818 - 0.819 -

MADAS13 0.826 - 0.828 -

MFAQ 0.781 - 0.825 -

http://wileyonlinelibrary.com
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that the presence of multicollinearity in predictors may not affect the overall fit of the model and its ability to accurately
predict the response value in certain cases, but it may sap the significant of some predictors and change their signs, thereby
making the specification of the correct model difficult. Nevertheless, the conventional model Mind is not preferable even
in this scenario due to its loss of interpretability, which is essential for doctors to understand the important risk factors of
the AD progression.

We also examined the preponderance of the combined measure of cognitive impairment over a single cognitive mea-
sure. We focused on 57 patients with diverse patterns of different cognitive measures. For instance, some patients’ ADAS11
scores exhibited an increasing trend but their FAQ scores remained unchanged (see Figure 1). For these patients, any sin-
gle cognitive test failed to capture the full picture of their cognitive impairment. These 57 subjects were treated as a test set
and the remaining 658 subjects were treated as a training set. We compared the proposed model MFULL with three reduced
models MADAS11, MADAS13, and MFAQ, each of which used a single measure to assess cognitive impairment. Given that most
of the subjects in the test set had suffered from AD or were censored at the 24th month, we calculated AUC at t = 12, 18
months and 𝛿 = 6 months. Table 2 (lower panel) presents the AUC values of the four competing models. MFULL consis-
tently outperforms the three reduced models. Hence, the use of a combined measure of cognitive impairment enhances
the discriminative capability of the model.

5 SIMULATION STUDY

In this section, we conducted two simulation studies to evaluate the finite sample performance of the proposed model.
Simulation 1 shows the empirical performance of the Bayesian estimation, whereas Simulation 2 examines the sensitivity
of the inference results to model assumptions.

5.1 Simulation 1

We generated datasets based on the proposed model with i = 1,… ,n, time points mi varying from 6 to 9, p = 3, and q = 1.
Model (1) was defined as follows:

yij = B𝜂ij + 𝝐ij, BT = (1∗ b2 b3), (16)

where the first elements of B was fixed as 1 to obtain an identified model, b2 = 0.6, and b3 = 0.7. The random error 𝝐ij
was generated from N(0,𝚿) with 𝚿 = diag(𝜓1, 𝜓2, 𝜓3) = diag(0.3, 0.3, 0.3).

The trajectory model (2) was set as follows:

𝜂ij = hi(tij) =
6∑

l=1
dilWl(tij), (17)

where di = (di1,… , di6)T are the subject-specific random effects independently simulated from N(0, I6), and Wl(tij)s are
natural cubic basis splines.

The PH model (3) was defined as follows:

𝜆(t|zi,ui) = 𝜆0(t) exp
(
𝜷Tzi + 𝛼hi(t)

)
, (18)

where zi = (zi1, zi2, zi3)T , and zi1, zi2, and zi3 were drawn from Exp(1) − 1, N(0, 1), and t(5), respectively, in which Exp(1)
denotes the exponential distribution with the rate parameter 1, and t(5) denotes the t distribution with a degree of freedom
5. The true population values of the regression parameters were set as 𝜷T = (1,−1, 1) and 𝛼 = 1. The failure time Ti
was generated from Model (18) with three types of baseline hazard functions: (i) 𝜆0(t) = 1 (constant), (ii) 𝜆0(t) = t + 0.5
(linear), and (iii) 𝜆0(t) = t2 + 0.3 (nonlinear). The censoring time Ci was independently generated based on a uniform
distribution of U[c1, c2], where c1 and c2 were selected to achieve censoring rates of 30% and 50%, respectively. Two sample
sizes n = 200 and n = 500 were considered.

In the posterior analysis, we used G = 5 sub-intervals to model the piecewise baseline hazard function. The cut points
s0,… , sG that define these sub-intervals were set as the quantiles of the observed survival times. The natural cubic spline



14 KANG et al.

T A B L E 3 Parameter estimates in the PH model in Simulation 1

𝝀0(t) = 1 𝝀0(t) = t + 0.3 𝝀0(t) = t2 + 0.5

n CR Para BIAS RMS BIAS RMS BIAS RMS

200 30% 𝛼 −0.044 0.098 −0.039 0.093 −0.018 0.090

𝛽1 −0.060 0.134 −0.074 0.130 −0.057 0.125

𝛽2 0.034 0.113 0.053 0.114 0.037 0.109

𝛽3 −0.052 0.116 −0.065 0.113 −0.051 0.108

50% 𝛼 −0.061 0.127 −0.065 0.118 −0.050 0.113

𝛽1 −0.075 0.143 −0.090 0.142 −0.071 0.136

𝛽2 0.064 0.134 0.075 0.141 0.059 0.135

𝛽3 −0.080 0.136 −0.089 0.135 −0.072 0.129

500 30% 𝛼 −0.028 0.068 −0.028 0.062 −0.015 0.058

𝛽1 −0.052 0.098 −0.062 0.091 −0.047 0.087

𝛽2 0.037 0.081 0.055 0.088 0.042 0.081

𝛽3 −0.052 0.098 −0.059 0.089 −0.048 0.087

50% 𝛼 −0.055 0.093 −0.054 0.086 −0.040 0.080

𝛽1 −0.064 0.108 −0.067 0.099 −0.050 0.095

𝛽2 0.055 0.100 0.063 0.104 0.050 0.096

𝛽3 −0.066 0.111 −0.067 0.098 −0.054 0.094

with 6 knots was again used to model the individual’s trajectory hi(t), and the knots (𝜅l, l = 1,… , 6) were selected as the
lth quantiles of all measurement time tij. We considered the prior inputs of (6)-(7) as follows:

Prior (I) 𝝁𝛽 = 0, 𝜇𝛼 = 0, 𝜎2
𝛽
= 𝜎2

𝛼 = 1,b10 = 0,𝚺b10 = I3,

a𝜖0 = 9, b𝜖0 = 4, 𝜌0 = 7,R0 = 4I6, a1 = 2, a2 = 0.01. (19)

Three parallel sequences with different starting values of unknowns were generated to determine the number of
burn-in iterations. We collected 20 000 observations after discarding 20 000 burn-in iterations to obtain the Bayesian esti-
mates of the model parameters. We used bias (BIAS) and root mean square error (RMS) between Bayesian estimates
and their true population values to assess the empirical performance of the parameter estimates. Table 3 summarizes
the estimation results of key parameters on the basis of 100 replicated datasets. The estimate of 𝚽 is unimportant
and not reported. The BIAS and RMS for most of the parameters are close to zero, thereby indicating the satisfac-
tory performance of Bayesian estimation in all the settings under consideration. As expected, performance is improved
when sample size increases from n = 200 to n = 500 or censoring rate (CR) decreases from 50% to 30%. To evaluate
the accuracy of the Monte Carlo estimation of survival probability, we compare the value of �̂�i(t + 𝛿|t) with its true
value 𝜋i(t + 𝛿|t) with t = x, x and 𝛿 = x. The estimates of 𝜋i(t + 𝛿|t) (presented in Table S5 of Web Appendix) are close
to their true values for all the combinations of t and 𝛿, indicating a satisfactory accuracy of the proposed Monte Carlo
estimation.

For comparison, we considered a competing joint model with the same setting but a linear trajectory model as follows:

𝜂ij = hi(tij) = ui1 + ui2tij. (20)

The Bayesian results obtained with 𝜆0(t) = 1 and CR = 30% under the proposed spline-based trajectory model and
the simpler linear trajectory model are summarized in Table S1 of the Web Appendix. All the Bayesian estimates in the
proposed model are reasonably close to their true values, while the estimates of 𝛼 and 𝜓 show considerable bias in the
simpler model. Such inaccuracy also appears in the estimates of latent variable 𝜂ij and its trajectory hi(t) as illustrated in
Figure S1 of the Web Appendix. The 𝜂ij values of nine randomly selected subjects and their corresponding trajectories
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hi(t)s estimated using the spline-based random coefficient model are close to each other, indicating that the proposed
model can provide adequate flexibility in describing the complex and subject-specific forms of individual trajectories. By
contrast, the simpler model with a linear trajectory cannot capture the complex patterns of individual trajectories and
produces biased results.

5.2 Simulation 2

This section assesses the sensitivity of Bayesian estimates to the inputs of prior distributions and to the violation of the
normality assumption of ui and 𝝐ij.

We first disturbed the hyperparameters as follows:

Prior (II) 𝝁𝛽 = (2, 2, 2)T , 𝜇𝛼 = 2, 𝜎2
𝛽
= 𝜎2

𝛼 = 104,b10 = (2, 2, 2)T ,𝚺b10 = 104I3,

a𝜖0 = 3, b𝜖0 = 2, 𝜌0 = 4,R0 = 2I6, a1 = 4, a2 = 0.001.

The Bayesian results obtained with 𝜆0(t) = 1 and CR = 30% under Prior (II) are presented in Table S2 of the Appendix
along with those obtained under Prior (I). All the estimates under Priors (I) and (II) are similar. Thus, Bayesian estimation
results are insensitive to the given prior inputs.

Furthermore, we investigated the sensitivity of Bayesian results to the normality assumption of ui and 𝝐ij. The model
setup is the same as that of Simulation 1, except that the distributions of ui or 𝝐ij are no longer normal. We considered
several nonnormal cases as follows: (1) dij ∼ Gamma(4, 2) − 2; (2) dij ∼ 1

3
N(1, 0.5) + 2

3
N(−0.5, 0.5); (3) 𝜖ijk ∼ Beta(3, 1) −

3
4
; and (4) 𝜖ijk ∼

√
0.2t(5). Table S3 of the Appendix presents the estimation results under Cases (1)-(4) with 𝜆0(t) = 1, CR

= 30%, and n = 500. A good agreement is achieved between the results reported in Tables S2 and S3 of the Web Appendix.
Thus, the Bayesian estimates of the model parameters are robust to the violation of normality assumption of ui and 𝝐ij
under consideration.

Finally, we use �̃�ij as an approximation of 𝜼ij in calculating the Pearson correlation Cor(𝜼ij, �̂�ij) given that 𝜼ij is unobserv-
able. To check the accuracy of such approximation, we compare the values of Cor(𝜼ij, �̂�ij) and Cor(�̃�ij, �̂�ij). Their estimates
with n = 300, 𝜆0(t) = 1 and CR = 30% are 0.741 and 0.743, which indicate that �̃�ij is a good approximation of 𝜼ij in the
calculation of Cor(𝜼ij, �̂�ij).

The computer code for conducting the preceding analyses is written in R and is freely available at
https://github.com/kenerous/JMMLS.

6 DISCUSSION

A joint model with multivariate longitudinal and survival data was developed to investigate the risk factors of the con-
version from MCI to AD and predict the time to onset of AD. We used the factor analytic technique to comprehensively
characterize patients’ cognitive impairment through multiple assessments of cognitive ability and then revealed its tra-
jectory using a highly flexible spline-based method. Such modeling framework solves two main problems of previous AD
studies, that is, the incomplete measure of cognitive impairment and linearity assumption on the trajectory of cognitive
impairment. While the results of our study confirmed several previous discoveries, such as the effects of marital status,
APOE-𝜖4 alleles, and gender on AD hazards, novel findings were also obtained. On the population level, the cognitive
impairment trajectory during MCI phase exhibited more pronounced ascending trend for patients who would later con-
vert to AD than for patients who would not. On the individual level, the complex patterns of individual trajectories of
cognitive decline were revealed through the proposed spline-based trajectory model. Moreover, the cognitive impairment
of patients with AD progression showed linear deteriorating trends from baseline to 6 months but nonlinear and more
pronounced deteriorating trends after 6 months. These findings may facilitate an early diagnosis of AD and highly tar-
geted treatment strategies in AD prevention. We also conducted the out-of-sample prediction to compare the proposed
model with several existing models. The results show that the proposed model outperforms the existing models in terms
of estimation and prediction.

This study can be extended in several directions. First, the proposed model assumes that the measurement errors
in Models (1) and the random coefficients in Model (2) follow the multivariate normal distribution. However, this
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normality assumption may not be supported in practice. Although our simulation study shows that the estimates of model
parameters are relatively insensitive to several non-normal distributions of ui and 𝝐ij, relaxing the normality assumption
and allowing these distributions to be unspecified are considerable scientific interests. For example, introducing the
Dirichlet process prior48 to model the distributions of the random effects and error terms can significantly enhance model
flexibility. Second, this study considered scalar quantities, that is, scores of several cognitive tests, as longitudinal measure-
ments. It would be interesting to consider longitudinal functional data, such as patients’ 3D MRI scans assessed over time
in the ADNI study and establish the joint modeling of longitudinal functional and survival data to examine the association
between brain imaging information and time to onset of AD. Third, we exclude subjects with less than four measure-
ments in this study because too few time points are insufficient to uncover the trajectory of cognitive impairment. Such a
selection may lead to a selection bias. However, given that our primary objective is to model the trajectory of time-varying
cognitive impairment and its effect on AD hazards, using samples with little dynamic information cannot achieve our
goal. A highly sophisticated method for addressing this issue is worthy of further investigation. Fourth, as pointed out by
the Associate Editor, the Gold Standard to test AD is autopsy. However, ADNI was first launched in 2004, but autopsy had
not been included in consent form until 2016. Even after 2016, very few autopsies were available in the ADNI study due
to insufficient effort on obtaining consent and insufficient tracking of participants after study withdrawal. The limited
samples restricted the use of autopsy as the test of AD in this study. Nevertheless, developing effective strategies to col-
lect autopsy information can facilitate the use of this Gold Standard in future studies. Finally, this study considered a PH
model to link the potential risk factors to time-to-AD. The proportional hazards assumptions can be evaluated through the
weighted Schoenfeld residual test.49 In the ADNI study, we checked the proportional hazards assumption for each predic-
tor and found that one of the predictors, hi(t), did not pass the test. We also considered an accelerated failure time (AFT)
model, which does not require the proportionality assumption and directly examines the predictor effects on the loga-
rithm of time-to-AD. However, the AFT model underperforms the PH model in terms of prediction accuracy. For example,
the AUC values of the AFT model with t = 12, 18 months and 𝛿 = 6 months are 0.818 and 0.821, which are much lower
than those of the proposed PH model (0.851 and 0.855). Apart from the AFT model, the additive hazards (AH) model is
also a common alternative to the PH model due to its easy interpretation of predictor effects. However, the AH model
is much more restrictive than its PH counterpart because it assumes that all predictor effects are linear and their sum-
mation (together with the baseline hazards) must be nonnegative. Ensuring such nonnegativity elicits additional issues,
especially when the predictors include the trajectory function of a latent factor. Furthermore, all published reports in the
ADNI study (eg, Lee et al,16 Li and Luo,10 Kong et al17) used PH models to examine the potential risk factors of AD haz-
ards. In accordance with the existing literature and based on the aforementioned reasons, we used the PH model for the
survival outcome in this study although it may not be an optimal choice. Extending the proposed joint modeling frame-
work to incorporate more flexible survival models, such as transformation models, may further enhance the estimation
and prediction accuracy, but it poses new theoretical and computational challenges and requires substantial efforts in the
future.
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